博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
网络协议---TCP---协议概述
阅读量:3921 次
发布时间:2019-05-23

本文共 7255 字,大约阅读时间需要 24 分钟。

在这里插入图片描述

TCP/IP协议群

在很多情况下,它只是利用 IP 进行通信时所必须用到的协议群的统称。

TCP/IP 一词泛指这些协议,因此,有时也称 TCP/IP 为网际协议群。
在这里插入图片描述
在这里插入图片描述

数据处理流程

在这里插入图片描述

① 应用程序处理
首先应用程序会进行编码处理,这些编码相当于 OSI 的表示层功能;
编码转化后,邮件不一定马上被发送出去,这种何时建立通信连接何时发送数据的管理功能,相当于 OSI 的会话层功能。
② TCP 模块的处理
TCP 根据应用的指示,负责建立连接、发送数据以及断开连接。TCP 提供将应用层发来的数据顺利发送至对端的可靠传输。为了实现这一功能,需要在应用层数据的前端附加一个 TCP 首部。
③ IP 模块的处理
IP 将 TCP 传过来的 TCP 首部和 TCP 数据合起来当做自己的数据,并在 TCP 首部的前端加上自己的 IP 首部。IP 包生成后,参考路由控制表决定接受此 IP 包的路由或主机。
④ 网络接口(以太网驱动)的处理
从 IP 传过来的 IP 包对于以太网来说就是数据。给这些数据附加上以太网首部并进行发送处理,生成的以太网数据包将通过物理层传输给接收端。
⑤ 网络接口(以太网驱动)的处理
主机收到以太网包后,首先从以太网包首部找到 MAC 地址判断是否为发送给自己的包,若不是则丢弃数据。
如果是发送给自己的包,则从以太网包首部中的类型确定数据类型,再传给相应的模块,如 IP、ARP 等。这里的例子则是 IP 。
⑥ IP 模块的处理
IP 模块接收到 数据后也做类似的处理。从包首部中判断此 IP 地址是否与自己的 IP 地址匹配,如果匹配则根据首部的协议类型将数据发送给对应的模块,如 TCP、UDP。这里的例子则是 TCP。
另外吗,对于有路由器的情况,接收端地址往往不是自己的地址,此时,需要借助路由控制表,在调查应该送往的主机或路由器之后再进行转发数据。
⑦ TCP 模块的处理
在 TCP 模块中,首先会计算一下校验和,判断数据是否被破坏。然后检查是否在按照序号接收数据。最后检查端口号,确定具体的应用程序。数据被完整地接收以后,会传给由端口号识别的应用程序。
⑧ 应用程序的处理
接收端应用程序会直接接收发送端发送的数据。通过解析数据,展示相应的内容。

传输层中的 TCP 和 UDP

TCP/IP 中有两个具有代表性的传输层协议,分别是 TCP 和 UDP。

TCP 是面向连接的、可靠的流协议。流就是指不间断的数据结构,当应用程序采用 TCP 发送消息时,虽然可以保证发送的顺序,但还是犹如没有任何间隔的数据流发送给接收端。TCP 为提供可靠性传输,实行“顺序控制”或“重发控制”机制。此外还具备“流控制(流量控制)”、“拥塞控制”、提高网络利用率等众多功能。

UDP 是不具有可靠性的数据报协议。细微的处理它会交给上层的应用去完成。在 UDP 的情况下,虽然可以确保发送消息的大小,却不能保证消息一定会到达。因此,应用有时会根据自己的需要进行重发处理。
TCP 和 UDP 的优缺点无法简单地、绝对地去做比较:TCP 用于在传输层有必要实现可靠传输的情况;而在一方面,UDP 主要用于那些对高速传输和实时性有较高要求的通信或广播通信。TCP 和 UDP 应该根据应用的目的按需使用。

通信地址

1、(数据链路层)MAC地址:用来识别同一链路中不同的计算机

2、IP地址:TCP/IP 网络中互连的主机和路由器
3、(传输层)端口号:用来识别同一台计算机中进行通信的不同应用程序,它也被称为程序地址。
# 协议端口

TCP/IP将端口分成两大类:

1、标准服务端口:为各种公共服务保留的标准服务端口号范围是【1~1023】
  常见的有FTP:21,Telnet:23,SMTP:25,DNS:53,TFTP:69,HTML:80,SNMP:161,DHCP:67&68。
  应用层中的常用服务的服务进程会不断地检测分配给它们的熟知端口,以便发现是否有某个用户进程要与它通信。
2、一些端口号被正式注册,它们分布在 1024~49151 之间,不过这些端口号可用于任何通信用途。
3、时序分配法:服务器有必要确定监听端口号,但是接受服务的客户端没必要确定端口号。在这种方法下,客户端应用程序完全可以不用自己设置端口号,而全权交给操作系统进行分配。动态分配的端口号范围在 49152~65535 之间。

端口号由其使用的传输层协议决定。因此,不同的传输层协议可以使用相同的端口号。

此外,那些知名端口号与传输层协议并无关系。只要端口一致都将分配同一种应用程序进行处理。

通信识别: IP 地址、端口号、协议号进行通信识别

在这里插入图片描述

在这里插入图片描述

四、网络层中的 IP 协议

IP(IPv4、IPv6)相当于 OSI 参考模型中的第3层——网络层。网络层的主要作用是“实现终端节点之间的通信”。这种终端节点之间的通信也叫“点对点通信”。

网络的下一层——数据链路层的主要作用是在互连同一种数据链路的节点之间进行包传递。而一旦跨越多种数据链路,就需要借助网络层。网络层可以跨越不同的数据链路,即使是在不同的数据链路上也能实现两端节点之间的数据包传输。
IP 大致分为三大作用模块,它们是 IP 寻址、路由(最终节点为止的转发)以及 IP 分包与组包。

1. IP地址

1.1 IP地址概述(IPv4:32bit)

在数据链路中的 MAC 地址正是用来标识同一个链路中的不同计算机

IP 地址用于在“连接到网络中的所有主机中识别出进行通信的目标地址”。因此,在 TCP/IP 通信中所有主机或路由器必须设定自己的 IP 地址。

1.2 IP 地址 = 网络标识 + 主机标识

在这里插入图片描述

在这里插入图片描述

1.3 IP 地址的分类

IP 地址分为四个级别,分别为A类、B类、C类、D类。它根据 IP 地址中从第 1 位到第 4 位的比特列对其网络标识和主机标识进行区分。

A 类 IP 地址是首位以 “0” 开头的地址。从第 1 位到第 8 位是它的网络标识。用十进制表示的话,0.0.0.0~127.0.0.0 是 A 类的网络地址。A 类地址的后 24 位相当于主机标识。因此,一个网段内可容纳的主机地址上限为16,777,214个。

B 类 IP 地址是前两位 “10” 的地址。从第 1 位到第 16 位是它的网络标识。用十进制表示的话,128.0.0.0~191.255.0.0 是 B 类的网络地址。B 类地址的后 16 位相当于主机标识。因此,一个网段内可容纳的主机地址上限为65,534个。

C 类 IP 地址是前三位为 “110” 的地址。从第 1 位到第 24 位是它的网络标识。用十进制表示的话,192.0.0.0~223.255.255.0 是 C 类的网络地址。C 类地址的后 8 位相当于主机标识。因此,一个网段内可容纳的主机地址上限为254个(=2^8-2)

D 类 IP 地址是前四位为 “1110” 的地址。从第 1 位到第 32 位是它的网络标识。用十进制表示的话,224.0.0.0~239.255.255.255 是 D 类的网络地址。D 类地址没有主机标识,常用于多播。

IP主机地址全为0:表示对应的网络地址或 IP 地址不可以获知的情况下才使用

1.4 广播地址(IP主机地址全为1)

广播地址用于在同一个链路中相互连接的主机之间发送数据包。

广播分为本地广播和直接广播两种。在本网络内的广播叫做本地广播;在不同网络之间的广播叫做直接广播。

1.5 IP 多播

多播用于将包发送给特定组内的所有主机。由于其直接使用 IP 地址,因此也不存在可靠传输。

相比于广播,多播既可以穿透路由器,又可以实现只给那些必要的组发送数据包。请看下图:
在这里插入图片描述
IP 多播
多播使用 D 类地址。因此,如果从首位开始到第 4 位是 “1110”,就可以认为是多播地址。而剩下的 28 位可以成为多播的组编号。
此外, 对于多播,所有的主机(路由器以外的主机和终端主机)必须属于 224.0.0.1 的组,所有的路由器必须属于 224.0.0.2 的组。

1.6 子网掩码(识别IP地址的网络地址和主机地址)

现在一个 IP 地址的网络标识和主机标识已不再受限于该地址的类别,而是由一个叫做“子网掩码”的识别码通过子网网络地址细分出比 A 类、B 类、C 类更小粒度的网络。这种方式实际上就是将原来 A 类、B 类、C 类等分类中的主机地址部分用作子网地址,可以将原网络分为多个物理网络的一种机制。

子网掩码用二进制方式表示的话,也是一个 32 位的数字。它对应 IP 地址网络标识部分的位全部为 “1”,对应 IP 地址主机标识的部分则全部为 “0”。由此,一个 IP 地址可以不再受限于自己的类别,而是可以用这样的子网掩码自由地定位自己的网络标识长度。当然,子网掩码必须是 IP 地址的首位开始连续的 “1”。

对于子网掩码,目前有两种表示方式。第一种是,将 IP 地址与子网掩码的地址分别用两行来表示。以 172.20.100.52 的前 26 位是网络地址的情况为例,如下:
在这里插入图片描述
第二种表示方式是,在每个 IP 地址后面追加网络地址的位数用 “/ ” 隔开,如下:
在这里插入图片描述

2. 路由

发送数据包时所使用的地址是网络层的地址,即 IP 地址。然而仅仅有 IP 地址还不足以实现将数据包发送到对端目标地址,在数据发送过程中还需要类似于“指明路由器或主机”的信息,以便真正发往目标地址。保存这种信息的就是路由控制表。

该路由控制表的形成方式有两种:一种是管理员手动设置,另一种是路由器与其他路由器相互交换信息时自动刷新。前者也叫做静态路由控制,而后者叫做动态路由控制。
IP 协议始终认为路由表是正确的。然后,IP 本身并没有定义制作路由控制表的协议。即 IP 没有制作路由控制表的机制。该表示由一个叫做“路由协议”的协议制作而成。

2.1 IP 地址与路由控制

IP 地址的网络地址部分用于进行路由控制。

路由控制表中记录着网络地址与下一步应该发送至路由器的地址。
在发送 IP 包时,首先要确定 IP 包首部中的目标地址,再从路由控制表中找到与该地址具有相同网络地址的记录,根据该记录将 IP 包转发给相应的下一个路由器。如果路由控制表中存在多条相同网络地址的记录,就选择一个最为吻合的网络地址。
在这里插入图片描述
路由控制表与 IP 包发送

  1. IP 分包与组包

每种数据链路的最大传输单元(MTU)都不尽相同,因为每个不同类型的数据链路的使用目的不同。使用目的不同,可承载的 MTU 也就不同。

任何一台主机都有必要对 IP 分片进行相应的处理。分片往往在网络上遇到比较大的报文无法一下子发送出去时才会进行处理。
经过分片之后的 IP 数据报在被重组的时候,只能由目标主机进行。路由器虽然做分片但不会进行重组。
3.1 路径 MTU 发现

分片机制也有它的不足。如路由器的处理负荷加重之类。因此,只要允许,是不希望由路由器进行 IP 数据包的分片处理的。

为了应对分片机制的不足,“路径 MTU 发现” 技术应运而生。路径 MTU 指的是,从发送端主机到接收端主机之间不需要分片是最大 MTU 的大小。即路径中存在的所有数据链路中最小的 MTU 。
进行路径 MTU 发现,就可以避免在中途的路由器上进行分片处理,也可以在 TCP 中发送更大的包。
4. IPv6

IPv6(IP version 6)是为了根本解决 IPv4 地址耗尽的问题而被标准化的网际协议。IPv4 的地址长度为 4 个 8 位字节,即 32 比特。而 IPv6 的地址长度则是原来的 4 倍,即 128 比特,一般写成 8 个 16 位字节。

4.1 IPv6 的特点

IP 得知的扩大与路由控制表的聚合。

性能提升。包首部长度采用固定的值(40字节),不再采用首部检验码。简化首部结构,减轻路由器负担。路由器不再做分片处理。
支持即插即用功能。即使没有DHCP服务器也可以实现自动分配 IP 地址。
采用认证与加密功能。应对伪造 IP 地址的网络安全功能以及防止线路窃听的功能。
多播、Mobile IP 成为扩展功能。
4.2 IPv6 中 IP 地址的标记方法

一般人们将 128 比特 IP 地址以每 16 比特为一组,每组用冒号(“:”)隔开进行标记。

而且如果出现连续的 0 时还可以将这些 0 省略,并用两个冒号(“::”)隔开。但是,一个 IP 地址中只允许出现一次两个连续的冒号。

4.3 IPv6 地址(互联网中唯一的一个全局单播地址,不需要正式分配 IP 地址)

在这里插入图片描述

4.4 全局单播地址

全局单播地址是指世界上唯一的一个地址。它是互联网通信以及各个域内部通信中最为常用的一个 IPv6 地址。

格式如下图所示,现在 IPv6 的网络中所使用的格式为,n = 48,m = 16 以及 128 - n - m = 64。即前 64 比特为网络标识,后 64 比特为主机标识。
在这里插入图片描述
全局单播地址

4.5 链路本地单播地址

链路本地单播地址是指在同一个数据链路内唯一的地址。它用于不经过路由器,在同一个链路中的通信。通常接口 ID 保存 64 比特版的 MAC 地址。

在这里插入图片描述
链路本地单播地址

4.6 唯一本地地址

唯一本地地址是不进行互联网通信时所用的地址。

唯一本地地址虽然不会与互联网连接,但是也会尽可能地随机生成一个唯一的全局 ID。
L 通常被置为 1
全局 ID 的值随机决定
子网 ID 是指该域子网地址
接口 ID 即为接口的 ID
在这里插入图片描述
唯一本地地址

4.7 IPv6 分段处理

IPv6 的分片处理只在作为起点的发送端主机上进行,路由器不参与分片。

IPv6 中最小 MTU 为 1280 字节,因此,在嵌入式系统中对于那些有一定系统资源限制的设备来说,不需要进行“路径 MTU 发现”,而是在发送 IP 包时直接以 1280 字节为单位分片送出。
4.8 IP 首部(暂略)

  1. IP 协议相关技术

IP 旨在让最终目标主机收到数据包,但是在这一过程中仅仅有 IP 是无法实现通信的。必须还有能够解析主机名称和 MAC 地址的功能,以及数据包在发送过程中异常情况处理的功能。

5.1 DNS

我们平常在访问某个网站时不适用 IP 地址,而是用一串由罗马字和点号组成的字符串。而一般用户在使用 TCP/IP 进行通信时也不使用 IP 地址。能够这样做是因为有了 DNS (Domain Name System)功能的支持。DNS 可以将那串字符串自动转换为具体的 IP 地址。

这种 DNS 不仅适用于 IPv4,还适用于 IPv6。
5.2 ARP

只要确定了 IP 地址,就可以向这个目标地址发送 IP 数据报。然而,在底层数据链路层,进行实际通信时却有必要了解每个 IP 地址所对应的 MAC 地址。

ARP 是一种解决地址问题的协议。以目标 IP 地址为线索,用来定位下一个应该接收数据分包的网络设备对应的 MAC 地址。不过 ARP 只适用于 IPv4,不能用于 IPv6。IPv6 中可以用 ICMPv6 替代 ARP 发送邻居探索消息。
RARP 是将 ARP 反过来,从 MAC 地址定位 IP 地址的一种协议。
5.3 ICMP

ICMP 的主要功能包括,确认 IP 包是否成功送达目标地址,通知在发送过程当中 IP 包被废弃的具体原因,改善网络设置等。

IPv4 中 ICMP 仅作为一个辅助作用支持 IPv4。也就是说,在 IPv4 时期,即使没有 ICMP,仍然可以实现 IP 通信。然而,在 IPv6 中,ICMP 的作用被扩大,如果没有 ICMPv6,IPv6 就无法进行正常通信。
5.4 DHCP

如果逐一为每一台主机设置 IP 地址会是非常繁琐的事情。特别是在移动使用笔记本电脑、只能终端以及平板电脑等设备时,每移动到一个新的地方,都要重新设置 IP 地址。

于是,为了实现自动设置 IP 地址、统一管理 IP 地址分配,就产生了 DHCP(Dynamic Host Configuration Protocol)协议。有了 DHCP,计算机只要连接到网络,就可以进行 TCP/IP 通信。也就是说,DHCP 让即插即用变得可能。
DHCP 不仅在 IPv4 中,在 IPv6 中也可以使用。
5.5 NAT

NAT(Network Address Translator)是用于在本地网络中使用私有地址,在连接互联网时转而使用全局 IP 地址的技术。

除转换 IP 地址外,还出现了可以转换 TCP、UDP 端口号的 NAPT(Network Address Ports Translator)技术,由此可以实现用一个全局 IP 地址与多个主机的通信。
NAT(NAPT)实际上是为正在面临地址枯竭的 IPv4 而开发的技术。不过,在 IPv6 中为了提高网络安全也在使用 NAT,在 IPv4 和 IPv6 之间的相互通信当中常常使用 NAT-PT。
5.6 IP 隧道
在这里插入图片描述
夹着 IPv4 网络的两个 IPv6 网络

如上图的网络环境中,网络 A 与网络 B 之间无法直接进行通信,为了让它们之间正常通信,这时必须得采用 IP 隧道的功能。

IP 隧道可以将那些从网络 A 发过来的 IPv6 的包统合为一个数据,再为之追加一个 IPv4 的首部以后转发给网络 C。
一般情况下,紧接着 IP 首部的是 TCP 或 UDP 的首部。然而,现在的应用当中“ IP 首部的后面还是 IP 首部”或者“ IP 首部的后面是 IPv6 的首部”等情况与日俱增。这种在网络层的首部后面追加网络层首部的通信方法就叫做“ IP 隧道”。

转载地址:http://puhrn.baihongyu.com/

你可能感兴趣的文章
.NET Core开发实战(第28课:工作单元模式(UnitOfWork):管理好你的事务)--学习笔记...
查看>>
如何用 Blazor 实现 Ant Design 组件库?
查看>>
DotNetCore Web应用程序中的Session管理
查看>>
从业务需求抽象成模型解决方案
查看>>
Kafka
查看>>
Magicodes.IE 2.2发布
查看>>
应用交付老兵眼中的Envoy, 云原生时代下的思考
查看>>
.NET 开源项目 StreamJsonRpc 介绍[上篇]
查看>>
.NET Core微服务开发选项
查看>>
探讨NET Core数据进行3DES加密或解密弱密钥问题
查看>>
Vue 3拖更,尤雨溪介绍最新进展
查看>>
如何利用.NETCore向Azure EventHubs准实时批量发送数据?
查看>>
WPF 框架全构建环境虚拟机硬盘分享
查看>>
ABP框架 v3.0 已发布!
查看>>
使用.Net Core实现的一个图形验证码
查看>>
.NET 开源项目 StreamJsonRpc 介绍[中篇]
查看>>
Blazor带我重玩前端(三)
查看>>
基于.NetCore3.1系列 —— 认证授权方案之授权揭秘 (下篇)
查看>>
实现业务数据的同步迁移 · 思路一
查看>>
龙芯开源社区上线.NET主页
查看>>